Aleph Alpha 嵌入技术¶
如果您在 Colab 上打开此 Notebook,可能需要安装 LlamaIndex 🦙。
In [ ]:
Copied!
%pip install llama-index-embeddings-alephalpha
%pip install llama-index-embeddings-alephalpha
In [ ]:
Copied!
!pip install llama-index
!pip install llama-index
In [ ]:
Copied!
# Initialise with your AA token
import os
os.environ["AA_TOKEN"] = "your_token_here"
# Initialise with your AA token
import os
os.environ["AA_TOKEN"] = "your_token_here"
使用 luminous-base
嵌入模型时¶
- representation="Document":适用于需要存储到向量数据库的文本(文档)
- representation="Query":适用于搜索查询,用于在向量数据库中查找最相关的文档
- representation="Symmetric":适用于聚类、分类、异常检测或可视化任务
In [ ]:
Copied!
from llama_index.embeddings.alephalpha import AlephAlphaEmbedding
# To customize your token, do this
# otherwise it will lookup AA_TOKEN from your env variable
# embed_model = AlephAlpha(token="<aa_token>")
# with representation='query'
embed_model = AlephAlphaEmbedding(
model="luminous-base",
representation="Query",
)
embeddings = embed_model.get_text_embedding("Hello Aleph Alpha!")
print(len(embeddings))
print(embeddings[:5])
from llama_index.embeddings.alephalpha import AlephAlphaEmbedding
# To customize your token, do this
# otherwise it will lookup AA_TOKEN from your env variable
# embed_model = AlephAlpha(token="")
# with representation='query'
embed_model = AlephAlphaEmbedding(
model="luminous-base",
representation="Query",
)
embeddings = embed_model.get_text_embedding("Hello Aleph Alpha!")
print(len(embeddings))
print(embeddings[:5])
representation_enum: SemanticRepresentation.Query 5120 [0.14257812, 2.59375, 0.33203125, -0.33789062, -0.94140625]
In [ ]:
Copied!
# with representation='Document'
embed_model = AlephAlphaEmbedding(
model="luminous-base",
representation="Document",
)
embeddings = embed_model.get_text_embedding("Hello Aleph Alpha!")
print(len(embeddings))
print(embeddings[:5])
# with representation='Document'
embed_model = AlephAlphaEmbedding(
model="luminous-base",
representation="Document",
)
embeddings = embed_model.get_text_embedding("Hello Aleph Alpha!")
print(len(embeddings))
print(embeddings[:5])
representation_enum: SemanticRepresentation.Document 5120 [0.14257812, 2.59375, 0.33203125, -0.33789062, -0.94140625]