使用 RichPromptTemplate 构建¶
RichPromptTemplate
是 llama-index-core==0.12.27
版本引入的新型提示模板,允许您使用 Jinja 语法构建具有丰富格式的提示。
通过它,您可以构建:
- 包含变量的基础提示
- 单一字符串中的聊天提示模板
- 支持文本、图像和音频的提示
- 具备循环或对象解析功能的高级提示
- 以及其他更多功能!
下面让我们看一些示例。
In [ ]:
Copied!
%pip install llama-index
%pip install llama-index
基础变量提示模板¶
在 RichPromptTemplate
中,您可以使用 {{ }}
语法将变量插入到提示词中。
In [ ]:
Copied!
from llama_index.core.prompts import RichPromptTemplate
prompt = RichPromptTemplate("Hello, {{ name }}!")
from llama_index.core.prompts import RichPromptTemplate
prompt = RichPromptTemplate("Hello, {{ name }}!")
您可以将提示信息格式化为字符串或聊天消息列表。
In [ ]:
Copied!
print(prompt.format(name="John"))
print(prompt.format(name="John"))
Hello, John!
In [ ]:
Copied!
print(prompt.format_messages(name="John"))
print(prompt.format_messages(name="John"))
[ChatMessage(role=<MessageRole.USER: 'user'>, additional_kwargs={}, blocks=[TextBlock(block_type='text', text='Hello, John!')])]
聊天提示模板¶
您也可以直接在提示模板中定义聊天消息块。
In [ ]:
Copied!
prompt = RichPromptTemplate(
"""
{% chat role="system" %}
You are now chatting with {{ user }}
{% endchat %}
{% chat role="user" %}
{{ user_msg }}
{% endchat %}
"""
)
prompt = RichPromptTemplate(
"""
{% chat role="system" %}
You are now chatting with {{ user }}
{% endchat %}
{% chat role="user" %}
{{ user_msg }}
{% endchat %}
"""
)
In [ ]:
Copied!
print(prompt.format_messages(user="John", user_msg="Hello!"))
print(prompt.format_messages(user="John", user_msg="Hello!"))
[ChatMessage(role=<MessageRole.SYSTEM: 'system'>, additional_kwargs={}, blocks=[TextBlock(block_type='text', text='You are now chatting with John')]), ChatMessage(role=<MessageRole.USER: 'user'>, additional_kwargs={}, blocks=[TextBlock(block_type='text', text='Hello!')])]
支持图像与音频输入的提示词¶
假设您使用的大语言模型(LLM)具备该功能,您还可以在提示词中包含图像和音频素材!
图像¶
In [ ]:
Copied!
!wget https://cdn.pixabay.com/photo/2016/07/07/16/46/dice-1502706_640.jpg -O image.png
!wget https://cdn.pixabay.com/photo/2016/07/07/16/46/dice-1502706_640.jpg -O image.png
In [ ]:
Copied!
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-4o-mini", api_key="sk-...")
prompt = RichPromptTemplate(
"""
Describe the following image:
{{ image_path | image}}
"""
)
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-4o-mini", api_key="sk-...")
prompt = RichPromptTemplate(
"""
Describe the following image:
{{ image_path | image}}
"""
)
In [ ]:
Copied!
messages = prompt.format_messages(image_path="./image.png")
response = llm.chat(messages)
print(response.message.content)
messages = prompt.format_messages(image_path="./image.png")
response = llm.chat(messages)
print(response.message.content)
The image features three white dice with black dots, captured in a monochrome setting. The dice are positioned on a checkered surface, which appears to be a wooden board. The background is blurred, creating a sense of depth, while the focus remains on the dice. The overall composition emphasizes the randomness and chance associated with rolling dice.
音频¶
In [ ]:
Copied!
!wget AUDIO_URL = "https://science.nasa.gov/wp-content/uploads/2024/04/sounds-of-mars-one-small-step-earth.wav" -O audio.wav
!wget AUDIO_URL = "https://science.nasa.gov/wp-content/uploads/2024/04/sounds-of-mars-one-small-step-earth.wav" -O audio.wav
In [ ]:
Copied!
prompt = RichPromptTemplate(
"""
Describe the following audio:
{{ audio_path | audio }}
"""
)
messages = prompt.format_messages(audio_path="./audio.wav")
prompt = RichPromptTemplate(
"""
Describe the following audio:
{{ audio_path | audio }}
"""
)
messages = prompt.format_messages(audio_path="./audio.wav")
In [ ]:
Copied!
llm = OpenAI(model="gpt-4o-audio-preview", api_key="sk-...")
response = llm.chat(messages)
print(response.message.content)
llm = OpenAI(model="gpt-4o-audio-preview", api_key="sk-...")
response = llm.chat(messages)
print(response.message.content)
The audio features a famous quote, "That's one small step for man, one giant leap for mankind." This statement was made during a significant historical event, symbolizing a monumental achievement for humanity.
[进阶] 循环与对象处理¶
现在,我们可以更进一步。假设我们有一个包含多组图片和文本的列表,需要将这些内容整合到提示词中。
此时可以使用 {% for x in y %}
循环语法遍历该列表,从而将图片和文本动态插入到提示词中。
In [ ]:
Copied!
text_and_images = [
("This is a test", "./image.png"),
("This is another test", "./image.png"),
]
prompt = RichPromptTemplate(
"""
{% for text, image_path in text_and_images %}
Here is some text:
{{ text }}
Here is an image:
{{ image_path | image }}
{% endfor %}
"""
)
messages = prompt.format_messages(text_and_images=text_and_images)
text_and_images = [
("This is a test", "./image.png"),
("This is another test", "./image.png"),
]
prompt = RichPromptTemplate(
"""
{% for text, image_path in text_and_images %}
Here is some text:
{{ text }}
Here is an image:
{{ image_path | image }}
{% endfor %}
"""
)
messages = prompt.format_messages(text_and_images=text_and_images)
让我们检查消息内容看看有什么。
In [ ]:
Copied!
for message in messages:
print(message.role.value)
for block in message.blocks:
print(str(block)[:100])
print("\n")
for message in messages:
print(message.role.value)
for block in message.blocks:
print(str(block)[:100])
print("\n")
user block_type='text' text='Here is some text:' block_type='text' text='This is a test' block_type='text' text='Here is an image:' block_type='image' image=None path=None url=AnyUrl(' block_type='text' text='Here is some text:' block_type='text' text='This is another test' block_type='text' text='Here is an image:' block_type='image' image=None path=None url=AnyUrl('
如你所见,我们有一条包含多个区块的消息,每个区块代表一个新的内容块(文本或图像)。
(注:渲染提示时图像会被解析为 base64 编码字符串)