Hologres¶
Hologres 是一站式实时数仓,可同时支持高性能OLAP分析和高QPS在线服务。
运行此笔记本需要云端部署的Hologres实例。您可通过此链接获取实例。
创建实例后,您应能通过Hologres控制台获取以下配置信息。
In [ ]:
Copied!
test_hologres_config = {
"host": "<host>",
"port": 80,
"user": "<user>",
"password": "<password>",
"database": "<database>",
"table_name": "<table_name>",
}
test_hologres_config = {
"host": "",
"port": 80,
"user": "",
"password": "",
"database": "",
"table_name": "",
}
顺便提醒一下,你需要确保已安装 llama-index
:
In [ ]:
Copied!
%pip install llama-index-vector-stores-hologres
%pip install llama-index-vector-stores-hologres
In [ ]:
Copied!
!pip install llama-index
!pip install llama-index
导入所需依赖包:¶
In [ ]:
Copied!
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
)
from llama_index.vector_stores.hologres import HologresVectorStore
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
)
from llama_index.vector_stores.hologres import HologresVectorStore
加载示例数据:¶
In [ ]:
Copied!
!mkdir -p 'data/paul_graham/'
!curl 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -o 'data/paul_graham/paul_graham_essay.txt'
!mkdir -p 'data/paul_graham/'
!curl 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -o 'data/paul_graham/paul_graham_essay.txt'
% Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 75042 100 75042 0 0 31985 0 0:00:02 0:00:02 --:--:-- 31987
读取数据:¶
In [ ]:
Copied!
# load documents
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
print(f"Total documents: {len(documents)}")
print(f"First document, id: {documents[0].doc_id}")
print(f"First document, hash: {documents[0].hash}")
print(
"First document, text"
f" ({len(documents[0].text)} characters):\n{'='*20}\n{documents[0].text[:360]} ..."
)
# load documents
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
print(f"Total documents: {len(documents)}")
print(f"First document, id: {documents[0].doc_id}")
print(f"First document, hash: {documents[0].hash}")
print(
"First document, text"
f" ({len(documents[0].text)} characters):\n{'='*20}\n{documents[0].text[:360]} ..."
)
Total documents: 1 First document, id: 824dafc0-0aa1-4c80-b99c-33895cfc606a First document, hash: 8430b3bdb65ee0a7853463b71e7e1e20beee3a3ce15ef3ec714919f8653b2eb9 First document, text (75014 characters): ==================== What I Worked On February 2021 Before college the two main things I worked on, outside of school, were writing and programming. I didn't write essays. I wrote what beginning writers were supposed to write then, and probably still are: short stories. My stories were awful. They had hardly any plot, just characters with strong feelings, which I imagined ma ...
创建 AnalyticDB 向量存储对象:¶
In [ ]:
Copied!
hologres_store = HologresVectorStore.from_param(
host=test_hologres_config["host"],
port=test_hologres_config["port"],
user=test_hologres_config["user"],
password=test_hologres_config["password"],
database=test_hologres_config["database"],
table_name=test_hologres_config["table_name"],
embedding_dimension=1536,
pre_delete_table=True,
)
hologres_store = HologresVectorStore.from_param(
host=test_hologres_config["host"],
port=test_hologres_config["port"],
user=test_hologres_config["user"],
password=test_hologres_config["password"],
database=test_hologres_config["database"],
table_name=test_hologres_config["table_name"],
embedding_dimension=1536,
pre_delete_table=True,
)
从文档构建索引:¶
In [ ]:
Copied!
storage_context = StorageContext.from_defaults(vector_store=hologres_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
storage_context = StorageContext.from_defaults(vector_store=hologres_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
使用索引进行查询:¶
In [ ]:
Copied!
query_engine = index.as_query_engine()
response = query_engine.query("Why did the author choose to work on AI?")
print(response.response)
query_engine = index.as_query_engine()
response = query_engine.query("Why did the author choose to work on AI?")
print(response.response)
The author was inspired to work on AI due to the influence of a science fiction novel, "The Moon is a Harsh Mistress," which featured an intelligent computer named Mike, and a PBS documentary showcasing Terry Winograd's use of the SHRDLU program. These experiences led the author to believe that creating intelligent machines was an imminent reality and sparked their interest in the field of AI.